Harnack Inequality for Nondivergent Elliptic Operators on Riemannian Manifolds

نویسندگان

  • SEICK KIM
  • S. KIM
چکیده

We consider second-order linear elliptic operators of nondivergence type which is intrinsically defined on Riemannian manifolds. Cabré proved a global Krylov-Safonov Harnack inequality under the assumption that the sectional curvature is nonnegative. We improve Cabré’s result and, as a consequence, we give another proof to Harnack inequality of Yau for positive harmonic functions on Riemannian manifolds with nonnegative Ricci curvature using the nondivergence structure of the Laplace operator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nondivergent Elliptic Equations on Manifolds with Nonnegative Curvature

Xavier Cabré Abstra t. We consider a class of second order linear elliptic operators intrinsically defined on Riemannian manifolds, and which correspond to nondivergent operators in Euclidean space. Under the assumption that the sectional curvature is nonnegative, we prove a global Krylov-Safonov Harnack inequality and, as a consequence, a Liouville theorem for solutions of such equations. From...

متن کامل

Harnack Type Inequality: the Method of Moving Planes

A Harnack type inequality is established for solutions to some semilinear elliptic equations in dimension two. The result is motivated by our approach to the study of some semilinear elliptic equations on compact Riemannian manifolds, which originated from some Chern–Simons Higgs model and have been studied recently by various authors.

متن کامل

Differential Harnack Inequalities on Riemannian Manifolds I : Linear Heat Equation

Abstract. In the first part of this paper, we get new Li-Yau type gradient estimates for positive solutions of heat equation on Riemmannian manifolds with Ricci(M) ≥ −k, k ∈ R. As applications, several parabolic Harnack inequalities are obtained and they lead to new estimates on heat kernels of manifolds with Ricci curvature bounded from below. In the second part, we establish a Perelman type L...

متن کامل

Uniformly Elliptic Operators on Riemannian Manifolds

Given a Riemannian manifold (M, g), we study the solutions of heat equations associated with second order differential operators in divergence form that are uniformly elliptic with respect to g . Typical examples of such operators are the Laplace operators of Riemannian structures which are quasi-isometric to g . We first prove some Poincare and Sobolev inequalities on geodesic balls. Then we u...

متن کامل

On Manifolds and Some Liouville Theorems of Porous Media Equations

(1.1) ut = ∆F (u) on a complete Riemannian manifold (M,g) of dimension n ≥ 1 with Ric(M) ≥ −k for some k ≥ 0. Here F ∈ C2(0,∞), F ′ > 0, and ∆ is the Laplace-Beltrami operator of the metric g. There is a lot of literature on this kind of topics. For example, related problems such as Porous Media Equations have been considered by D.G. Aronson [1], G. Auchmuty and D. Bao [2], M.A. Herrero and M. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002